The post How to Use Artificial Intelligence in Trading appeared on BitcoinEthereumNews.com. To truly leverage AI, it is essential to follow best practices, especially in a complex sector like trading, where mistakes and oversights can be costly. Artificial intelligence is transforming the way traders analyze markets, make decisions, and manage risk.  But like any powerful technology, AI requires method, discipline, and knowledge. In this article, we explore how to integrate AI into an operational strategy, which risks to avoid, and how to use predictive models, automation, and sentiment analysis in a professional and sustainable manner. Understanding Where AI Can Truly Assist The first step is to clearly define the role of artificial intelligence in your workflow. Many traders envision it as a kind of oracle capable of predicting future prices. In reality, AI excels primarily in processing vast amounts of data, recognizing complex patterns, and identifying signals that escape the human eye. For example, a crypto trader can use it to analyze thousands of posts on X in real-time, filtering sentiment towards Bitcoin or Solana. Alternatively, a stock trader can connect machine learning models to volumes and macro data, uncovering anomalies or divergences that may predict market reversals. The fundamental rule is simple: AI should not replace the strategy, but enhance it. The Quality of Data Determines the Quality of the Model A common mistake is feeding models with noisy, incomplete, or distorted datasets. In the trading realm, data cleansing is the real difference between a model that identifies opportunities and one that generates false positives. A concrete example: many crypto traders use incorrect price datasets for liquidity shocks or periods of low depth on exchanges. This leads the model to learn non-existent patterns or those tied to isolated events. Conversely, a dataset corrected for anomalous spikes and integrated with real volumes allows AI to identify more robust trends. Best Practice AI:… The post How to Use Artificial Intelligence in Trading appeared on BitcoinEthereumNews.com. To truly leverage AI, it is essential to follow best practices, especially in a complex sector like trading, where mistakes and oversights can be costly. Artificial intelligence is transforming the way traders analyze markets, make decisions, and manage risk.  But like any powerful technology, AI requires method, discipline, and knowledge. In this article, we explore how to integrate AI into an operational strategy, which risks to avoid, and how to use predictive models, automation, and sentiment analysis in a professional and sustainable manner. Understanding Where AI Can Truly Assist The first step is to clearly define the role of artificial intelligence in your workflow. Many traders envision it as a kind of oracle capable of predicting future prices. In reality, AI excels primarily in processing vast amounts of data, recognizing complex patterns, and identifying signals that escape the human eye. For example, a crypto trader can use it to analyze thousands of posts on X in real-time, filtering sentiment towards Bitcoin or Solana. Alternatively, a stock trader can connect machine learning models to volumes and macro data, uncovering anomalies or divergences that may predict market reversals. The fundamental rule is simple: AI should not replace the strategy, but enhance it. The Quality of Data Determines the Quality of the Model A common mistake is feeding models with noisy, incomplete, or distorted datasets. In the trading realm, data cleansing is the real difference between a model that identifies opportunities and one that generates false positives. A concrete example: many crypto traders use incorrect price datasets for liquidity shocks or periods of low depth on exchanges. This leads the model to learn non-existent patterns or those tied to isolated events. Conversely, a dataset corrected for anomalous spikes and integrated with real volumes allows AI to identify more robust trends. Best Practice AI:…

How to Use Artificial Intelligence in Trading

6 min read

To truly leverage AI, it is essential to follow best practices, especially in a complex sector like trading, where mistakes and oversights can be costly.

Artificial intelligence is transforming the way traders analyze markets, make decisions, and manage risk. 

But like any powerful technology, AI requires method, discipline, and knowledge. In this article, we explore how to integrate AI into an operational strategy, which risks to avoid, and how to use predictive models, automation, and sentiment analysis in a professional and sustainable manner.

Understanding Where AI Can Truly Assist

The first step is to clearly define the role of artificial intelligence in your workflow. Many traders envision it as a kind of oracle capable of predicting future prices. In reality, AI excels primarily in processing vast amounts of data, recognizing complex patterns, and identifying signals that escape the human eye.

For example, a crypto trader can use it to analyze thousands of posts on X in real-time, filtering sentiment towards Bitcoin or Solana. Alternatively, a stock trader can connect machine learning models to volumes and macro data, uncovering anomalies or divergences that may predict market reversals.

The fundamental rule is simple: AI should not replace the strategy, but enhance it.

The Quality of Data Determines the Quality of the Model

A common mistake is feeding models with noisy, incomplete, or distorted datasets. In the trading realm, data cleansing is the real difference between a model that identifies opportunities and one that generates false positives.

A concrete example: many crypto traders use incorrect price datasets for liquidity shocks or periods of low depth on exchanges. This leads the model to learn non-existent patterns or those tied to isolated events. Conversely, a dataset corrected for anomalous spikes and integrated with real volumes allows AI to identify more robust trends.

Best Practice AI: Rigorous Backtesting and Realistic Scenarios

Among the AI best practices is the obligation to test each model conservatively. The backtest must take into account fees, slippage, volatility, and, most importantly, stress periods.

Consider the traders who developed models on Ethereum using only data from 2023, a relatively stable year. When applied to 2024 — marked by strong liquidity rotations and regulatory shocks — those models failed spectacularly.

A serious test must include different phases: the euphoria of the bull market in 2021, the crash of 2022, the recovery of 2023, and the compression phases of 2024. Only in this way can a model demonstrate its ability to generalize.

Overfitting: The Invisible Enemy of Artificial Intelligence

AI has a structural flaw: it tends to “overlearn”. When a model is over-trained, it performs perfectly on past data but collapses in the present.

In trading, this translates into strategies that appear brilliant on historical charts but fail as soon as they are applied in real-time.

A classic example is the model that “predicts” the price of Bitcoin with 90% accuracy… simply because it has memorized dozens of useless and noisy variables. It is not predicting anything: it is merely repeating the past.

A good AI model must be simple, readable, and stable. It’s better to have a less accurate but consistent prediction than a perfect yet fragile one.

Human Oversight Remains Indispensable

Even the most advanced AI should not be left to operate autonomously without supervision. The market is unpredictable and can react to sudden news, central bank interventions, hacks, or geopolitical shocks.

Algorithms that rely solely on sentiment can interpret these signals as genuine rallies, leading to incorrect entries.

An experienced trader, on the other hand, would filter the information before taking action.

Integrating AI into Risk Management

Artificial intelligence can also assist in building more robust portfolios. Many models analyze correlations, volatility, and market cycles to suggest a better asset allocation.

For example, some crypto traders use AI to identify when Bitcoin becomes too dominant compared to altcoins and vice versa. This helps them understand when to reduce exposure, hedge positions, or rebalance their portfolio.

However, AI must never be allowed to modify stop loss, exposure limits, or position size without human oversight. Risk decisions must remain under the trader’s supervision.

Sentiment Analysis as a Strategic Tool

One of the most effective applications of artificial intelligence in trading is sentiment analysis. NLP (Natural Language Processing) models analyze millions of texts in seconds: tweets, news, posts, technical analyses, institutional reports.

A concrete example: during the FTX case, the AI detected a drop in sentiment several days before the situation fully exploded. Anxiety indicators on X and Reddit were significantly increasing, even though the price had not yet reacted. Traders who integrated these signals avoided or limited substantial losses.

This is an example of how AI, when used correctly, can anticipate market dynamics before they become visible on the charts.

Automation: a best practice for AI is to proceed gradually

Automating a trading system is possible, but it requires a gradual approach. Many traders succumb to the temptation of delegating everything to the algorithm. This is a mistake.

First, signals are tested manually. Then, semi-automatic confirmation is implemented. Only after months of testing can one consider automatic management, always with clear limits.

A real example: numerous crypto traders have developed bots based on volatility breakouts. They worked excellently during months of strong trends, but they wrecked accounts during range-bound periods. Total automation without supervision amplified the losses.

A gradual approach would have avoided the problem.

Ethics, Security, and Regulations: An Aspect Not to Be Overlooked

Using AI in trading also means adhering to rules and responsibilities. Models must be transparent, controllable, and above all, compliant with the regulations of the respective country.
AI cannot be used to manipulate markets, amplify false news, or circumvent limits imposed by authorities.

This is one of the reasons why many financial institutions implement internal model audit systems: knowing how the system makes decisions becomes as important as the outcome itself.

AI Best Practices: Concrete Rules

AI can be an extraordinary competitive advantage for traders, but only if used methodically. AI best practices are not a set of abstract rules: they are the foundation that allows technology to be used in a professional, secure, and sustainable manner.

Artificial intelligence is not a market wizard. It is an amplifier. It can enhance human intuition, improve data quality, reduce errors, and increase decision-making speed. But it requires discipline, monitoring, and a clear strategy.

Source: https://en.cryptonomist.ch/2025/11/19/best-practice-ai-how-to-use-artificial-intelligence-in-trading-safely-and-effectively/

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

VanEck Targets Stablecoins & Next-Gen ICOs

VanEck Targets Stablecoins & Next-Gen ICOs

The post VanEck Targets Stablecoins & Next-Gen ICOs appeared on BitcoinEthereumNews.com. Welcome to the US Crypto News Morning Briefing—your essential rundown of the most important developments in crypto for the day ahead. Grab a coffee because the firms shaping crypto’s future are not just building products, but also trying to reshape how capital flows. Crypto News of the Day: VanEck Maps Next Frontier of Crypto Venture Investing VanEck, a Wall Street player known for financial “firsts,” is pushing that legacy into Web3. The firsts include pioneering US gold funds and launching one of the earliest spot Bitcoin ETFs. Sponsored Sponsored “Financial instruments have always been a kind of tokenization. From seashells to traveler’s checks, from relational databases to today’s on-chain assets. You could even joke that VanEck’s first gold mutual funds were the original ‘tokenized gold,’” Juan C. Lopez, General Partner at VanEck Ventures, told BeInCrypto. That same instinct drives the firm’s venture bets. Lopez said VanEck goes beyond writing checks and brings the full weight of the firm. This extends from regulatory proximity to product experiments to founders building the next phase of crypto infrastructure. Asked about key investment priorities, Lopez highlighted stablecoins. “We care deeply about three questions: How do we accelerate stablecoin ubiquity? What will users want to do with them once highly distributed? And what net new assets can we construct now that we have sophisticated market infrastructure?” Lopez added. However, VanEck is not limiting itself to the hottest narrative, acknowledging that decentralized finance (DeFi) is having a renaissance. The VanEck executive also noted that success will depend on new approaches to identity and programmable compliance layered on public blockchains. Backing Legion With A New Model for ICOs Sponsored Sponsored That compliance-first angle explains VanEck Ventures’ recent co-lead of Legion’s $5 million seed round alongside Brevan Howard. Legion aims to reinvent token fundraising by making early-stage access…
Share
BitcoinEthereumNews2025/09/18 03:52
Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse?

Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse?

Whales offload 200 million XRP leaving market uncertainty behind. XRP faces potential collapse as whales drive major price shifts. Is XRP’s future in danger after massive sell-off by whales? XRP’s price has been under intense pressure recently as whales reportedly offloaded a staggering 200 million XRP over the past two weeks. This massive sell-off has raised alarms across the cryptocurrency community, as many wonder if the market is on the brink of collapse or just undergoing a temporary correction. According to crypto analyst Ali (@ali_charts), this surge in whale activity correlates directly with the price fluctuations seen in the past few weeks. XRP experienced a sharp spike in late July and early August, but the price quickly reversed as whales began to sell their holdings in large quantities. The increased volume during this period highlights the intensity of the sell-off, leaving many traders to question the future of XRP’s value. Whales have offloaded around 200 million $XRP in the last two weeks! pic.twitter.com/MiSQPpDwZM — Ali (@ali_charts) September 17, 2025 Also Read: Shiba Inu’s Price Is at a Tipping Point: Will It Break or Crash Soon? Can XRP Recover or Is a Bigger Decline Ahead? As the market absorbs the effects of the whale offload, technical indicators suggest that XRP may be facing a period of consolidation. The Relative Strength Index (RSI), currently sitting at 53.05, signals a neutral market stance, indicating that XRP could move in either direction. This leaves traders uncertain whether the XRP will break above its current resistance levels or continue to fall as more whales sell off their holdings. Source: Tradingview Additionally, the Bollinger Bands, suggest that XRP is nearing the upper limits of its range. This often points to a potential slowdown or pullback in price, further raising concerns about the future direction of the XRP. With the price currently around $3.02, many are questioning whether XRP can regain its footing or if it will continue to decline. The Aftermath of Whale Activity: Is XRP’s Future in Danger? Despite the large sell-off, XRP is not yet showing signs of total collapse. However, the market remains fragile, and the price is likely to remain volatile in the coming days. With whales continuing to influence price movements, many investors are watching closely to see if this trend will reverse or intensify. The coming weeks will be critical for determining whether XRP can stabilize or face further declines. The combination of whale offloading and technical indicators suggest that XRP’s price is at a crossroads. Traders and investors alike are waiting for clear signals to determine if the XRP will bounce back or continue its downward trajectory. Also Read: Metaplanet’s Bold Move: $15M U.S. Subsidiary to Supercharge Bitcoin Strategy The post Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse? appeared first on 36Crypto.
Share
Coinstats2025/09/17 23:42
Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

The post Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued appeared on BitcoinEthereumNews.com. American-based rock band Foreigner performs onstage at the Rosemont Horizon, Rosemont, Illinois, November 8, 1981. Pictured are, from left, Mick Jones, on guitar, and vocalist Lou Gramm. (Photo by Paul Natkin/Getty Images) Getty Images Singer Lou Gramm has a vivid memory of recording the ballad “Waiting for a Girl Like You” at New York City’s Electric Lady Studio for his band Foreigner more than 40 years ago. Gramm was adding his vocals for the track in the control room on the other side of the glass when he noticed a beautiful woman walking through the door. “She sits on the sofa in front of the board,” he says. “She looked at me while I was singing. And every now and then, she had a little smile on her face. I’m not sure what that was, but it was driving me crazy. “And at the end of the song, when I’m singing the ad-libs and stuff like that, she gets up,” he continues. “She gives me a little smile and walks out of the room. And when the song ended, I would look up every now and then to see where Mick [Jones] and Mutt [Lange] were, and they were pushing buttons and turning knobs. They were not aware that she was even in the room. So when the song ended, I said, ‘Guys, who was that woman who walked in? She was beautiful.’ And they looked at each other, and they went, ‘What are you talking about? We didn’t see anything.’ But you know what? I think they put her up to it. Doesn’t that sound more like them?” “Waiting for a Girl Like You” became a massive hit in 1981 for Foreigner off their album 4, which peaked at number one on the Billboard chart for 10 weeks and…
Share
BitcoinEthereumNews2025/09/18 01:26