The post NVIDIA cuTile Python Guide Shows 90% cuBLAS Performance for Matrix Ops appeared on BitcoinEthereumNews.com. Timothy Morano Jan 14, 2026 21:15 NVIDIAThe post NVIDIA cuTile Python Guide Shows 90% cuBLAS Performance for Matrix Ops appeared on BitcoinEthereumNews.com. Timothy Morano Jan 14, 2026 21:15 NVIDIA

NVIDIA cuTile Python Guide Shows 90% cuBLAS Performance for Matrix Ops



Timothy Morano
Jan 14, 2026 21:15

NVIDIA releases detailed cuTile Python tutorial for Blackwell GPUs, demonstrating matrix multiplication achieving over 90% of cuBLAS performance with simplified code.

NVIDIA has published a comprehensive developer guide for its cuTile Python framework, demonstrating how the new tile-based programming model can achieve over 90% of cuBLAS performance for matrix multiplication operations on Blackwell architecture GPUs.

The tutorial, authored by NVIDIA engineer Jinman Xie, walks developers through implementing high-performance matrix multiplication using the cuTile library introduced with CUDA 13.1 in December 2025. Testing on an RTX 5080 showed the cuTile implementation matching PyTorch’s cuBLAS-backed operations across matrix sizes from 1024×1024 to 16384×16384.

What cuTile Changes for Developers

The framework represents NVIDIA’s shift away from traditional thread-level GPU programming. Instead of managing individual threads, developers now work with “tiles” – larger data chunks that the compiler automatically optimizes for tensor core execution.

A complete matrix multiplication kernel in cuTile requires roughly 30 lines of Python code. The key operations: load tiles from matrices A and B, call ct.mma() for matrix multiply-accumulate (which auto-invokes tensor cores), and store results. The framework handles thread synchronization and memory access patterns internally.

Current requirements limit adoption: CUDA 13.1 minimum, Blackwell architecture only (RTX 50 series, compute capability 10.x and 12.x), and Python 3.10+. NVIDIA indicates broader architecture support will come in future CUDA releases.

Performance Optimization Details

The guide covers “swizzle” optimization – a technique that remaps block IDs to improve cache hit rates. NVIDIA’s example shows swizzled memory access reducing total data loads by 20% compared to linear row access, translating directly to throughput gains.

Tile size configuration matters significantly. For float16/bfloat16 operations, the tutorial recommends 128×256×64 tiles; for float32, 32×32×32. These aren’t universal – optimal parameters depend on matrix dimensions, GPU architecture, and available shared memory.

Market Implications

NVIDIA shares traded at $182.06 as of January 14, down 2.02% on the day. The company’s push to simplify GPU programming comes as competition in AI accelerator markets intensifies.

The cuTile framework matters because matrix multiplication underlies virtually all neural network operations. Reducing the expertise barrier for writing performant GPU code could expand NVIDIA’s developer ecosystem – a key competitive moat as AMD and custom silicon vendors chase the AI training and inference markets.

Full code examples and benchmarks are available in NVIDIA’s TileGym repository. The autotuner tool can automatically determine optimal tile parameters for specific workloads, addressing one of the main friction points in GPU kernel optimization.

Image source: Shutterstock

Source: https://blockchain.news/news/nvidia-cutile-python-matrix-multiply-blackwell-tutorial

Market Opportunity
OPSWAP Logo
OPSWAP Price(OPS)
$0.005916
$0.005916$0.005916
-10.36%
USD
OPSWAP (OPS) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Expert Analysis: Is PEPENODE the Best Meme Coin for 100x Gains in 2025?

Expert Analysis: Is PEPENODE the Best Meme Coin for 100x Gains in 2025?

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.
Share
Blockchainreporter2025/09/20 04:30
Top 3 AI Cloud Stocks That Could 10X Before 2030

Top 3 AI Cloud Stocks That Could 10X Before 2030

A lot of people are still stuck on the “big names” in AI. Nvidia is the obvious one. Palantir has already become a household ticker too. But the next wave of upside
Share
Captainaltcoin2026/01/29 03:00
Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

The post Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be appeared on BitcoinEthereumNews.com. Jordan Love and the Green Bay Packers are off to a 2-0 start. Getty Images The Green Bay Packers are, once again, one of the NFL’s better teams. The Cleveland Browns are, once again, one of the league’s doormats. It’s why unbeaten Green Bay (2-0) is a 8-point favorite at winless Cleveland (0-2) Sunday according to betmgm.com. The money line is also Green Bay -500. Most expect this to be a Packers’ rout, and it very well could be. But Green Bay knows taking anyone in this league for granted can prove costly. “I think if you look at their roster, the paper, who they have on that team, what they can do, they got a lot of talent and things can turn around quickly for them,” Packers safety Xavier McKinney said. “We just got to kind of keep that in mind and know we not just walking into something and they just going to lay down. That’s not what they going to do.” The Browns certainly haven’t laid down on defense. Far from. Cleveland is allowing an NFL-best 191.5 yards per game. The Browns gave up 141 yards to Cincinnati in Week 1, including just seven in the second half, but still lost, 17-16. Cleveland has given up an NFL-best 45.5 rushing yards per game and just 2.1 rushing yards per attempt. “The biggest thing is our defensive line is much, much improved over last year and I think we’ve got back to our personality,” defensive coordinator Jim Schwartz said recently. “When we play our best, our D-line leads us there as our engine.” The Browns rank third in the league in passing defense, allowing just 146.0 yards per game. Cleveland has also gone 30 straight games without allowing a 300-yard passer, the longest active streak in the NFL.…
Share
BitcoinEthereumNews2025/09/18 00:41